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Abstract 
 

Systems are increasingly required to fuse data from 
geographically dispersed, heterogeneous information 
sources to produce up-to-date, mission-relevant 
results. These products focus not only on traditional 
military forces and systems, but to an increasing 
degree also on non-traditional combatants and their 
social networks. Successful multi-INT fusion requires 
that the constituent systems interoperate not just at the 
level of syntax and formats, but also at the level of 
semantics. Ontologies are vital enablers for semantic 
interoperability. Because uncertainty is a fundamental 
aspect of multi-INT fusion, lack of support for 
uncertainty is a major limitation of current-generation 
ontology formalisms. Probabilistic OWL (PR-OWL) 
extends the OWL Web Ontology Language to enable 
the construction of probabilistic ontologies. Ontologies 
constructed in PR-OWL can represent complex 
patterns of evidential relationships among uncertain 
hypotheses. Recently, a system for specifying and 
reasoning with PR-OWL ontologies has been released 
in alpha version. This paper describes the PR-OWL 
ontology language, the probabilistic logic on which it 
is based, and the reasoning system implementation. A 
hypothetical case study in the counterterrorism domain 
is illustrates the capabilities of PR-OWL.  
 
1. Introduction 
 

Multi-INT fusion is a critical technology for the 
next generation of military and intelligence systems. 
As connectivity and bandwidth increases, commanders 
and analysts are deluged with ever-greater volumes of 
data from geographically dispersed, heterogeneous 
information sources. In today’s military engagements, 
fusion products must focus not only on traditional 
military forces and systems, but also on non-traditional 
combatants and their social networks. Successful 

multi-INT fusion requires that the constituent systems 
interoperate not just at the level of syntax and formats, 
but also at the level of semantics. That is, 
interoperating systems should interpret terminology in 
a consistent way; or if not, appropriate translations 
must be established between vocabularies used by 
different systems.  Techniques for making semantic 
information explicit and computationally accessible are 
key to effective exploitation of data from diverse 
sources. Shared formal semantics enables systems with 
different internal representations to exchange 
information, and provides a means to enforce business 
rules such as access controls for security. 

When heterogeneous systems are required to 
interoperate in an open world, vocabularies that were 
developed for individual stand-alone applications break 
down. Ontologies provide shared representations of the 
entities and relationships characterizing a domain, into 
which vocabularies of legacy systems can be mapped. 
However, a major limitation of traditional ontology 
formalisms is the lack of consistent support for 
uncertainty. Because uncertainty is a fundamental 
aspect of multi-INT fusion, this is a serious deficiency. 
Current ontology formalisms provide no principled 
means to ensure semantic consistency with respect to 
issues of uncertainty or data quality.  

Probabilistic ontologies [1] augment standard 
ontologies with probabilistic information about the 
domain. Probabilistic OWL (PR-OWL) extends the 
OWL Web Ontology Language to enable the 
construction of probabilistic ontologies. PR-OWL is 
based on Multi-Entity Bayesian Networks (MEBN), a 
first-order probabilistic logic that combines the 
representational power of first-order logic (FOL) and 
Bayesian Networks (BN) [2]. Ontologies constructed 
in PR-OWL can represent complex patterns of 
evidential relationships among uncertain hypotheses. 
Recently, a system for specifying and reasoning with 
PR-OWL ontologies has been released in alpha version 
[3, 4].  This system, called UnBBayes-MEBN, 
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provides a graphical user interface for defining entities, 
attributes, and probabilistic relationships, defining 
instances, entering evidence, and entering queries. It 
also includes a reasoning system for performing 
Bayesian inference to calculate responses to 
probabilistic queries.  

The following section describes the PR-OWL 
ontology language and the MEBN logic on which it is 
based. Section 3 describes the UnBBayes system for 
entering and reasoning with PR-OWL probabilistic 
ontologies. Section 5 illustrates the capabilities of PR-
OWL with a hypothetical case study in the 
counterterrorism domain.  
 
2. Probabilistic Ontologies 
 

Initial attempts to represent uncertainty in ontology 
languages tend to begin with constructs for attaching 
probabilities as attributes of entities. This approach is 
clearly inadequate, in that it fails to account for 
structural features such as conditional dependence (or 
independence), double counting of influence on 
multiply connected graphs, and context-specific 
independence. Many researchers have pointed out the 
importance of structural information in probabilistic 
models (e.g. [5, 6, 7]), and it is well known that some 
questions about evidence can be answered entirely in 
structural terms (e.g., [6], page 271). For instance, 
Shafer ([8], pages 5-9) stated that probability is more 
about structure than it is about numbers. 

This is particularly true in domains such as 
intelligence analysis and Human Intelligence 
(HUMINT), which rely on complex chains of 
argument with many interacting uncertain hypotheses, 
in which subtle features of an argument may augment 
or diminish its force [6]. Structural information also 
plays a major role in the way evidence collected from 
multiple sensors with different degrees of reliability 
and trust is evaluated. In many cases, different aspects 
of the same piece of information have to be analyzed 
and weighed based on incomplete knowledge about the 
source. Structural information is a key asset to provide 
an in-depth analysis of what each piece of knowledge 
means in the overall context of an evidential chain. 
Special-purpose stand-alone systems may not 
explicitly represent many of these subtle structural 
features, leaving them as implicit assumptions 
underlying the algorithmic processing performed by 
the system. However, when systems interoperate, it is 
essential to represent explicitly the assumptions 
underlying the processing, and to share information 
about the context of reasoning, to enable the 
consuming system to properly assess credibility of the 
information and its import within the overall context of 

reasoning. That is, systems must share not only 
conclusions, but semantic information about how those 
conclusions were reached and the conditions under 
which the conclusions are valid. This requires semantic 
interoperability.  

State-of-the-art systems are increasingly adopting 
ontologies as a means to ensure formal semantic 
support for knowledge sharing. Uncertainty is 
becoming recognized as an important aspect to be 
represented and used in reasoning. A common mistake 
is to provide support for uncertainty representation by 
simply annotating ontologies with numerical 
probabilities. This is a weak approach that leads to 
fragile intelligence systems, as too much information is 
lost to the lack of a representational scheme that can 
capture structural nuances of the probabilistic 
information. Clearly, more than mere annotation is 
needed. Indeed, there is a need for a new category of 
ontologies. 

Definition 1 (from [1]): A probabilistic ontology is an 
explicit, formal knowledge representation that 
expresses knowledge about a domain of application. 
This includes: 

1a. Types of entities that exist in the domain; 
1b. Properties of those entities; 
1c. Relationships among entities; 
1d. Processes and events that happen with those 

entities; 
1e. Statistical regularities that characterize the 

domain; 
1f. Inconclusive, ambiguous, incomplete, 

unreliable, and dissonant knowledge related to 
entities of the domain; and 

1g. Uncertainty about all the above forms of 
knowledge; 

where the term entity refers to any concept (real or 
fictitious, concrete or abstract) that can be described 
and reasoned about within the domain of 
application. 

Probabilistic ontologies are used for the purpose of 
comprehensively describing knowledge about a 
domain, along with its associated uncertainty, in a 
principled, structured and sharable way. Ideally, this 
knowledge should be represented in a format that can 
be read and processed by a computer. Probabilistic 
ontologies also expand the possibilities of standard 
ontologies by introducing the requirement of a proper 
representation of the statistical regularities in a domain, 
and uncertain evidence about entities in a domain of 
application.  

Another aspect that must be emphasized when 
devising data sharing schemes for intelligence systems 
is the level of expressivity of a representation 



 

formalism. In other words, any representational 
scheme that attempts to convey all the details and 
idiosyncrasies of a complex domain must be highly 
expressive. Although tractability requirements often 
motivate restrictions on the ability of reasoning 
engines to process highly expressive representations, if 
ontologies are to be general-purpose repositories of 
shared knowledge, then restrictions on reasoners 
should not dictate what it is possible to say about a 
domain. PR-OWL, which is used in this paper as the 
language for building probabilistic ontologies, can 
achieve the required level of expressivity because it is 
based on a First-Order Bayesian Logic that represents 
probability distributions over interpretations of 
arbitrary first-order domain theories [2]. 

MEBN is a first-order Bayesian logic that integrates 
classical first-order logic with probability theory. 
Classical first-order logic (FOL) is by far the most 
commonly used, studied and implemented logical 
system, serving as the logical basis for most current-
generation AI systems and ontology languages. MEBN 
logic provides a logical foundation for extending the 
capability of ontology languages to include a logically 
coherent representation for uncertainty. Because a 
MEBN theory represents a coherent probability 
distribution, Bayes Theorem provides a mathematical 
foundation for learning and inference that reduces to 
classical logic in the case of certain knowledge (i.e., all 
probabilities are zero or one).  

MEBN represents the world as comprised of entities 
that have attributes and are related to other entities. 
Knowledge about the attributes of entities and their 
relationships to each other is represented as a 
collection of MEBN fragments (MFrags) organized 
into MEBN Theories (MTheories). An MFrag 
represents a small, repeatable piece of knowledge 
about the probabilistic relationships among a set of 
interrelated hypotheses about attributes of or 
relationships among entities of given types. The 
generic knowledge represented by the MFrag can be 
instantiated repeatedly on different entities of the 
allowable types, thus composing complex argument 
structures from repeated sub-structures. An example of 
this is shown below in the case study. 

Specifically, an MFrag contains context, input, and 
resident random variables (RVs), a fragment graph and 
local distributions. The RVs represent uncertain 
hypotheses; the fragment graph represents dependency 
relationships the RVs; and the local distributions 
provide quantitative information about the strength of 
the relationships encoded by the fragment graph.  
Together, the fragment graph and the local 
distributions define conditional probability 
distributions for instances of the resident random 
variables (RVs), conditional on the values of instances 

of their parents in the fragment graphs, and given the 
context constraints. Distributions for the input and 
context RVs are defined in other MFrags. Context 
nodes represent conditions assumed for definition of 
the local distributions.  

A collection of MFrags that satisfies certain 
consistency constraints implicitly defines a joint 
probability distribution on instances of its random 
variables.  Such a collection of MFrags is called an 
MTheory.  MEBN semantics integrates the standard 
model-theoretic semantics of classical first-order logic 
with random variables as formalized in mathematical 
statistics. Specifically, a theory in first-order logic 
defines a set of possible worlds; and any world in 
which all the axioms of the theory are satisfied is 
called a model of the axioms. Beyond ruling out 
worlds inconsistent with the axioms, classical logic 
cannot say anything about relative plausibility of the 
possible worlds. A first-order Bayesian logic such as 
MEBN can grade the possible worlds according to 
plausibility. Thus, from a given set of axioms, first-
order logic can do no more than assert that an assertion 
is proven, disproven, or neither proven nor disproven. 
As with FOL, MEBN logic assigns probability zero to 
assertions that can be disproven from the axioms of an 
MTheory, and probability one to assertions that can be 
proven. However, MEBN logic can assign probabilities 
between zero and one to hypotheses that can be neither 
proven nor disproven.  

As a full integration of first-order logic and 
probability, MEBN provides: (1) a means of 
expressing a globally consistent joint distribution over 
models of any consistent, finitely axiomatizable FOL 
theory; (2) a proof theory capable of identifying in-
consistent theories in finitely many steps and 
converging to correct responses to probabilistic 
queries; and (3) a built in mechanism for adding 
sequences of new axioms and refining theories in the 
light of observations. Thus, even the most complex 
situations can be represented in MEBN, provided they 
can represented in FOL. Furthermore, because MEBN 
is a first order Bayesian logic, its use as the underlying 
semantics of PR-OWL not only guarantees a formal 
mathematical foundation for a probabilistic extension 
to the OWL language (PR-OWL), but also ensures that 
the advantages of Bayesian Inference (e.g. natural 
“Occam’s Razor”, support for learning from data, etc.) 
will accrue to PR-OWL probabilistic ontologies. A 
comprehensive explanation of MEBN logic is not on 
the scope of this paper, but the interested reader is 
directed to [2]. 

PR-OWL was developed as an extension enabling 
OWL ontologies to represent complex Bayesian 
models in a way that is flexible enough to be used by 
diverse Bayesian probabilistic tools (e.g. Netica, 



 

Hugin, Quiddity*Suite, JavaBayes, etc.) based on 
different probabilistic technologies (e.g. PRMs, BNs, 
etc.). More specifically, PR-OWL is an upper ontology 
for probabilistic systems that can be used as a 
framework for developing probabilistic ontologies (as 
defined above) that are expressive enough to represent 
even the most complex probabilistic models. DaConta 
et al.  define an upper ontology as a set of integrated 
ontologies that characterizes a set of basic 
commonsense knowledge notions ([9], page 230). In 
PR-OWL, these basic commonsense notions are related 
to representing uncertainty in a principled way using 
OWL syntax (itself a specialization of XML syntax), 
providing a set of constructs that can be employed to 
build probabilistic ontologies. 

Figure 1 shows the main concepts involved in 
defining an MTheory in PR-OWL. 

 
Figure 1 – Main Elements of PR-OWL 

In the diagram, ellipses represent general classes 
while arrows represent the main relationships between 
these classes. A probabilistic ontology (PO) has to 
have at least one individual of class MTheory, which is 
basically a label linking a group of MFrags that 
collectively form a valid MTheory. In actual PR-OWL 
syntax, that link is expressed via the object property 
hasMFrag (which is the inverse of object property 
isMFragIn). Individuals of class MFrag are comprised 
of nodes, which can be resident, input, or context 
nodes (not shown in the picture). Each individual of 
class Node is a random variable RV and thus has a 
mutually exclusive, collectively exhaustive set of 
possible states. In PR-OWL, the object property 
hasPossibleValues links each node with its possible 
states, which are individuals of class Entity. Finally, 
random variables (represented by the class Nodes in 
PR-OWL) have unconditional or conditional 
probability distributions, which are represented by 
class ProbabilityDistribution and linked to its 
respective nodes via the object property hasProbDist. 
Figure 2 depicts the main elements of the PR-OWL 
language, its subclasses, and the secondary elements 
necessary for representing an MTheory. The relations 
necessary to express the complex structure of MEBN 
probabilistic models using the OWL syntax are also 
depicted. In addition to [1] the prospective reader will 

find more information on the PR-OWL language at 
http://www.pr-owl.org. 

 
Figure 2 – PR-OWL Elements 

The first step towards building a probabilistic 
ontology in compliance with our Definition 1 is to 
import into any OWL editor an OWL file containing 
the PR-OWL classes, subclasses, and properties (one is 
available at http://www.pr-owl.org/pr-owl.owl). After 
importing the PR-OWL definitions, the next step in 
ontology design is to construct domain-specific 
concepts, using the PR-OWL definitions to represent 
uncertainty about their attributes and relationships. 
Using this procedure, an ontology engineer is not only 
able to build a coherent generative MTheory and other 
probabilistic ontology elements, but also make it 
compatible with other ontologies that use PR-OWL 
concepts. 
 
3. A Reasoner for Bayesian Ontologies 
 

At its current stage of development, PR-OWL 
contains only the basic representation elements that 
provide a means of representing any MEBN theory. 
Such a representation could be used by a Bayesian tool 
(acting as a probabilistic ontology reasoner) to perform 
inferences to answer queries and/or to learn from 
newly incoming evidence via Bayesian learning. 

However, building MFrags in a traditional ontology 
editor is a manual, error prone, and tedious process. 
Avoiding errors or inconsistencies requires deep 
knowledge of the logic and of the data structures of 
PR-OWL, since the user would have to know all 
technical terms such as hasPossibleValues, is-
NodeFrom, isResidentNodeIn, etc. Furthermore, 
reasoning with a PR-OWL ontology requires  creating 
instances of the random variables need to respond to a 
given query, assembling them into a Bayesian network, 
and entering that Bayesian network into a software 
application that can perform the desired inference. This 
too is a tedious, manual, error-prone process. Ideally, 
much of this work could be automated by a software 



 

application designed to enforce the consistency of a 
MEBN model and to respond correctly to queries. 

The development of UnBBayes-MEBN, an open 
source, Java-based application that is currently in alpha 
phase (public release March 08), is an important step 
towards this objective, as it provides both a GUI for 
building probabilistic ontologies and a reasoner based 
on the PR-OWL/MEBN framework. 

UnBBayes-MEBN was designed to allow building 
probabilistic ontologies in an intuitive way without 
having to rely on a deep knowledge of the PR-OWL 
specification. Figure 3 shows a snapshot of the 
UnBBayes-MEBN user interface. In the figure, a click 
on the “R” icon and another click anywhere in the 
editing panel will create a resident node, for which a 
description can be inserted in the text area at the lower 
left part of the screen. Clicking on the arrow icon 
would allow one to graphically define the probabilistic 
relations of that resident node with other nodes, as 
much as it would be done in current Bayesian packages 
such as Hugin™. All those actions would result in the 
software creating the respective PR-OWL tags 
(syntactic elements that denote particular parts of a PR-
OWL ontology) in the background. 

 
Figure 3 – The UnBBayes-MEBN GUI 

Probabilistic Ontologies in UnBBayes-MEBN are 
saved in PR-OWL format (*.owl file), while 
application-specific data is stored in a text file with the 
*.ubf extension. Support for MEBN input/output 
operations is provided via the Protégé-OWL API1, 
which is based on the class JenaOWLModel. By using 
a common API, UnBBayes-MEBN ensures that 
MTheories created using its GUI can be opened and 
edited in popular ontology editor Protégé2 (and vice-
versa). This compatibility is important because it 
ensures that files created in UnBBayes-MEBN can be 
opened and edited not only in Protégé, but also in any 
OWL-compliant application (although these 

                                                
1 http://protege.stanford.edu/plugins/owl/api/index.html 
2 http://protege.stanford.edu 

applications will not be able to understand the 
ontology’s probabilistic characteristics). In addition, 
ontologies that have already been defined using an 
OWL-compliant editor can be extended to the PR-
OWL format in a quick and direct way. All that is 
needed is to open the OWL file in UnBBayes-MEBN, 
create an MTheory for the ontology, and save the 
result. 

UnBBayes-MEBN provides not only a GUI for 
building probabilistic ontologies, but also a 
probabilistic reasoner that allows for plausible 
inferences to the knowledge base (KB) using Bayes 
Theorem as evidence accrues. Currently, only a 
restricted class of queries has been implemented, but 
future releases will include the ability to perform 
multiple queries at the same time. 

When a query is submitted, the knowledge base is 
searched for information to answer the query. If the 
available information does not suffice, then the KB and 
the generative MTheory are used to construct a BN to 
answer the query. This process is called Situation 
Specific Bayesian Network (SSBN) construction. 

In the current implementation, a query consists of a 
single random variable (RV) instance, which is not 
allowed to have any evidence below it. The following 
procedure takes a node name and a list of entity 
instances as arguments. It is called initially with the 
query node and its arguments. 
PROCEDURE SSBN-CNSTR(NODE,ENTITY-LIST) 
(i)  For the RV instance NODE(ENTITY-LIST), 

search for evidence in the KB. If there is a finding 
for this given entry, finish.  

(ii) Search for the resident node that has the name 
NODE and get its MFrag. Once NODE(OV-LIST) 
is found, verify if the type of ENTITY-LIST is the 
same as OV-LIST (where OV-LIST is the list of 
ordinary variable arguments for NODE in its home 
MFrag).  

(iii) Verify in the KB which context nodes refer to the 
OVs in OV-LIST, replacing each OV by the 
appropriate instance in ENTITY-LIST. If any 
context variable is false, mark the MFrag to use 
the default distribution.  

(iv) If the truth-value of the context node in (iii) is not 
determined, make it a parent of NODE. 

(v)  For each parent of NODE, identify any instance of 
the parent that can be constructed by replacing the 
OVs by the known entities (contained in the query 
or KB), and has not yet been added to the SSBN. 
For each such parent instance, call procedure 
SSBN-CNSTR for the parent node and its 
arguments. 

(vi) Create the NODE's CPT.  
(vii) Finish.  



 

This algorithm is easily enhanced to allow multiple 
query nodes and evidence below query nodes. These 
enhancements are currently under development. 

A few performance issues had to be considered in 
implementing UnBBayes-MEBN. Depending on the 
complexity of the domain, the algorithm may reach a 
context node that cannot be immediately evaluated. 
This happens when all ordinary variables in the parent 
set of a resident random variable term do not appear in 
the resident term itself. In this case, there may be an 
arbitrary, possibly infinite number of instances of a 
parent for any given instance of the child. In this case, 
the local distribution for a random variable must 
specify how to combine influences from all relevant 
instances of its parents. 

However, especially in complex formulas this may 
have a strong impact in the performance of the 
algorithm, so the designed solution involves asking the 
user for more information. In the current 
implementation, if one does not provide such 
information the algorithm will just halt. 

Another design option was to restrict memory usage 
in a way that a possible memory overload triggers a 
warning to the user and stops the algorithm. In step 
(iii), a design optimization over the general SSBN 
algorithm in [2], only the necessary context nodes for a 
given MFrag are evaluated, in contrast with the 
original solution of revising all the context nodes for 
that MFrag.  

Although the implementation addressed other 
optimization issues, for the sake of conciseness only 
the most relevant are listed here. UNBBayes-MEBN is 
a work in progress that is still in alpha status, but it 
already provides a major contribution to the 
development of probabilistic ontologies. Its basic 
functionality was enough to support our work in 
designing a case study employing POs as a knowledge 
sharing enabler. 
 
4. Case Study: Attack in Lahore 
 

To illustrate the capabilities of PR-OWL to 
represent the kinds of multi-INT fusion problems faced 
by today’s net-centric systems, we consider a 
hypothetical counter-terrorism case study.  Our simple 
illustrative scenario concerns an attempted attack on a 
high-profile meeting in Pakistan that is detected and 
prevented through collaboration between two 
intelligence analysts and interoperation of diverse 
fusion systems. Although the scenario is hypothetical, 
it illustrates the role of semantic technology and 
probabilistic reasoning in enabling a successful 
intervention to prevent a terrorist plot from succeeding. 

The analysts. Intelligence analyst IA1 has been 
assigned the task of compiling and maintaining social 
networks of persons-of-interest in Pakistan. Over time, 
he has developed a social network that includes a 
known arms dealer (AD) in Islamabad and his 
associates. Meanwhile, intelligence analyst IA2 has 
been tasked with compiling and maintaining an 
intelligence profile of the city of Lahore. In this role, 
IA2 has access to all intelligence reports associated 
with people, events, communications, etc within his 
area of responsibility (AOR). 

The meeting. At present, IA2 is aware of, and is 
monitoring, a conference of six Tribal Leaders (TL1 – 
TL6) that is occurring in Lahore. This is a high-profile 
meeting that is receiving heavy coverage by news 
agencies all over the world, and is therefore of concern 
as a potential terrorist target. 

The arrest. At the Lahore airport, a canine unit has 
detected explosive residue on a Lahore resident (P) 
attempting to leave the city. Upon receiving this report, 
IA2 declares P a person-of-interest. This declaration 
initiates an automatic action to add P to the scope of 
IA1’s social network, and to alert IA1 to report any 
significant results concerning P coming from the social 
network analysis. IA1’s analysis uncovers a third-order 
relationship between P and AD: P’s brother, BP, has 
the same religious advisor, C, as AD.  

Figure 4 shows a set of MFrags that could be used 
to support the above analysis. These MFrags are shown 
as screenshots from the UNBBayes-MEBN system. 
The MFrags involve reasoning about entities of 
different types and the relationships among them.  In 
an operational analyst support system, the PR-OWL 
ontology that represented the uncertain aspects of this 
problem would import existing upper ontologies and 
domain ontologies. For this illustration, we constructed 
a simple, stand-alone PR-OWL ontology.  

Plan Agent and Target. This MFrag represents basic 
information about attacks using explosives. The 
context random variables, drawn as pentagons at the 
top of the MFrag, represent logical conditions assumed 
to hold when the probability distributions are assigned. 
In this case, the context random variables state that pln 
represents an attack plan, agt and v represent persons-
of-interest, and tgt represents a venue that might be 
targeted by the attack.  In our simple example, we take 
a venue to denote a localized space-time region that 
might be the focus of an attack.  The MFrag contains 
two input random variables, whose distributions are 
defined in other MFrags. These are shown as 
trapezoids in the figure. They represent whether agt is 
a weapons supplier and whether v and agt are rivals in 
the social network. Root nodes in the MFrag are 
random variables representing whether the plan is 
active, the political importance of the target, and 



 

whether a rival of agt is expected to be present at the 
venue. Whether the venue is targeted depends on 
whether the plan is active (if the plan is not active, then 
no venue is targeted by the plan), and the political 
importance of the venue (important venues are more 
likely to be targeted. Whether agt is an agent of the 
plan, i.e., is actively involved in bringing it about, 
depends on whether the plan is active, whether a rival 
of agt is expected to be at the venue (agents may try to 
target their rivals), and whether the agent is a weapons 
supplier (weapons suppliers are more likely to be 
agents in attacks using explosives). Finally, whether 
agt plays the role of supplying weapons depends on 
whether agt is an agent of the plan and whether agt is a 
weapons supplier. 

Social Network. This MFrag represents the actors 
and their relationships. Its context variables state that 
agt1 and agt2 are persons-of-interest and pln is an 
attack plan. It represents the knowledge that two agents 
of the same plan are likely to be related in the social 
network. It also represents probabilities that two 

persons-of-interest are rivals and that a person-of-
interest is a weapons dealer.   

Plan Execution. This MFrag represents the 
knowledge that an agent of a plan may execute the 
plan, and one of the activities a plan executor might 
perform is to plant explosives at the targeted venue. 

Forensic Report. This MFrag represents the 
possibility that an individual who plants explosives 
may be apprehended and explosive residues detected. 

Of course, the model described here is highly 
simplified – its purpose is to illustrate the capabilities 
of the language and not to provide a sophisticated 
representation of terrorist attacks. Our ability to 
represent the problem is limited by the inability of the 
alpha implementation of UNBBayes-MEBN to 
represent subtypes.  We expect this limitation to be 
removed in future versions. 

We could not use UNBBayes-MEBN to construct a 
situation-specific Bayesian network (SSBN) for IA2’s 
analysis problem, because the current version is limited 
to the special case of a single query node with no 
evidence below the query node. Our model does not 
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meet that limitation. Nevertheless, we did construct a 
SSBN by hand for this problem. To do this, we first 
defined instances of the relevant entities: P, C, and AD 
(persons of interest), Conf (a venue), and ConfAtk (an 
attack plan). The query of concern is whether the 
conference is targeted. This is represented by the RV 
instance IsTarget(Conf, ConfAttack). This is an 
instance of the generic RV IsTarget(v, pln) in the Plan 
Agent and Target MFrag, in which Conf has been 
substituted for the ordinary variable v and ConfAtk has 
been substituted for the ordinary variable pln. Evidence 
random variable instances ExplosiveResidueReport(P), 
SNRelated(P, AD), SNRelated(C, AD), IsWeapon-
Supplier(AD), and PoliticalImportance(Conf) are also 
created to represent the information that explosive 
residues were found on P, that P and AD are related 
through the social network analysis, that C and AD are 
related through the social network analysis, that AD is 
an arms dealer, and that the conference has high 
political importance. SSBN construction begins with 
these RV instances, identifies any additional RV 
instances needed to compute a query response, 
instantiates them, and uses the fragment graphs to 
compose them into a Bayesian network. After 
declaring the evidence, a standard belief propagation 
algorithm is used to compute a query response.  

The prior probability of an arbitrary venue being 
targeted for an attack was set at 0.02%. For an event of 
high political importance such as the conference in 
question, the probability is 0.3%.  After incorporating 
the information that AD is a weapons dealer who is 
related in the social network to both C and P, and that 
explosive residues were detected on P, the probability 
that the conference has been targeted for attack 
becomes about 10%.  

As part of his continuing analysis, IA2 has been 
monitoring the system for current intelligence 
information related to the conference. A query for the 
current locations of TL1 through TL6 reveals a 
HUMINT report that TL6 was seen in Karachi five 
hours ago. A query for IMINT change detection 
indicates that a vehicle that was present during the 
conference is now missing from the conference 
location. A further analysis of the HUMINT report 
reveals that TL6 was seen entering the residence of C. 
Finally, a query to the social network system reveals 
that TL6 and TL5 are bitter rivals. 

Figure 5 shows a set of MFrags that can be 
instantiated to incorporate this new information.   

Agent Location. This MFrag represents the 
knowledge that an individual who is expected at a 
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venue is likely to be at the venue unless the individual 
is an agent of a plan that targets the venue.  

Coordination MFrag. This MFrag represents the 
knowledge that agents of a plan may meet to 
coordinate their plan. 

HUMINT Report MFrag. This MFrag represents the 
information . 

After constructing the situation-specific Bayesian 
network and adding the evidence that TL6 was 
reported to be entering C’s residence, that C’s 
residence was a location other than the conference, that 
TL6 and C are related in the social network (inferred 
by logical reasoning from the visit to C’s residence), 
that TL6’s car was missing from the conference, and 
that TL6 and TL5 are rivals, the probability has 
increased to about 71% that the conference has been 
targeted for an attack.  

Figure 6 shows the SSBN constructed by hand 
using the Netica® Bayesian network software package. 
Comparing this SSBN with the MFrags, we see that its 
random variables are instances of the random variables 
from the MFrags, obtained by substituting problem-
specific entity instances for the ordinary variables of 
the MFrags. We are currently extending the SSBN 

construction algorithm in UnBBayes-MEBN to be 
capable of constructing the SSBN for this problem. 

This problem requires bringing knowledge to bear 
about events in space and time, how agents use objects 
such cars, social interactions among agents, and other 
sophisticated kinds of reasoning. Many of these 
reasoning patterns are reusable across a wide variety of 
problems. Examples include the knowledge that 
individuals may meet with each other to coordinate 
joint activities, and that they use cars for 
transportation. In an operational system, these kinds of 
reasoning would make use of existing ontologies. PR-
OWL allows the user of such an ontology to add 
probabilistic information to represent relationships that 
fall short of certainty. 

To conclude our case study, after using PR-OWL 
and Bayesian reasoning to explore the implications of 
the evidence, IA2 appreciates the significance of the 
combined Multi-INT data, and issues an Actionable 
Intelligence Report to interdict the possible terrorist 
attack.  

 

 
Figure 6: Situation-Specific Bayesian Network for Conference Bombing 



 

5. Conclusion 
 
Exactly how ontologies should work with 

probabilities is still an open research issue. The 
Intelligence Analysis of the knowledge sharing use 
case presented in this work has shown how 
probabilistic ontologies can be used to address that 
issue. UnBBayes-MEBN, which was used to support 
the use case, is still in alpha phase and should see 
various improvements in the near future. This system 
is a promising environment for building probabilistic 
ontologies to support knowledge sharing in open world 
environments. 

Ontologies provide the “semantic glue” to enable 
knowledge sharing among diverse systems cooperating 
in data rich domains such as Intelligence Analysis, but 
fail to provide adequate support for uncertainty, an 
ubiquitous characteristic of open world environments. 
Effective multi-INT fusion requires uncertainty 
management to be effective, and recent advances in 
research on probabilistic ontologies have the potential 
to integrate uncertainty management smoothly with 
semantic technology. 

The case study presented in this work has shown 
that such research, albeit in its infancy, can help to 
support interoperability among Intelligence systems in 
an open environment, addressing issues of fusing 
multiple sources of noisy information into a coherent 
overall situation picture. 
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Intelligence Analysis and Uncertainty

Intelligence information comes from reports subject 
to many kinds of uncertainty
• Noise in sensors
• Incorrect, incomplete, deceptive human intelligence
• Lack of understanding of cause and effect mechanisms in 

the world
• etc.

Effective intelligence analysis 
requires combining uncertain
reports from multiple sources 
to form a coherent picture
of a situation
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Vision: A Net-Centric World
Autonomous software agents 
interoperate seamlessly
Each agent has timely access to 
mission-critical information
Agents are not overloaded with 
unnecessary information
Information is properly synchronized 
and up-to-date
Data from disparate sources is fused 
into mission-relevant knowledge
Multi-level security permits needed access 
while preventing non-authorized use

Web Services:

SOAP overSOAP over
HTTPSHTTPS

Enabling Interoperability



SOAP overSOAP over
HTTPSHTTPS

The P-F-B Triangle

PublishFind

Bind Service 
Provider

Service 
Consumer

Service 
Registry

SOAP overSOAP over
HTTPSHTTPS

SOAP overSOAP over
HTTPSHTTPS

Why Semantics?

Semantic interoperability is a much stronger requirement than type consistency

Syntax
– Syntax: rules of 

formation for a data 
type

– Syntactic 
interoperability: 
applications can 
process each other’s 
data formats

– Example: 3.2 is
a legal floating
point number

Semantics
– Semantics: the meaning of expressions
– Semantic interoperability: 

applications interpret data in the same 
way

– Example: Diagnostic benchmarks 
were run on 3.2 GHz processor
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Semantics in stovepipe systems are in the mind 
of the human 

– Natural language documentation
– Data structures embedded in code

Net-centric systems require formal, machine-
interpretable semantics
Semantic information in service descriptions enables 
consumers and providers to have a common 
understanding of:

– What does the service do?
– What inputs does it require and what results does it produce? 
– What are conditions (constraints/policies) for use?
– How to invoke it? (Address & WSDL description)

Semantics in Net-Centric Services
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Uncertainty and Ontologies

Semantically aware systems are essential to multi-INT 
fusion.

Ontologies are a means to semantic awareness
• Explicit, formal representation of entities and relationships in a 

domain of application

Representing and reasoning with uncertainty is essential

But...
Traditional ontological Traditional ontological 

Engineering methods provide no Engineering methods provide no 
support for representing and support for representing and 

reasoning with uncertainty in a reasoning with uncertainty in a 
principled wayprincipled way
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Issues

How should uncertainty be represented in 
semantically aware systems?
Should ontologies provide a means to express 
uncertainty?
How should ontologies and probabilistic 
reasoning systems work together?
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Probability and Ontology

Much of our domain knowledge is statistical
Reasoner can use statistical regularities to:
• Classify instances (Bayesian classifiers)
• Infer attributes of instances

Multi-INT fusion systems must exchange more than 
just conclusions
• Uncertainties
• Pedigrees
• Sources and credibility information

Representing statistical information in ontologies 
supports interoperability
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Extends W3C recommended OWL ontology language
Based on expressive probabilistic logic
Represents probabilistic knowledge in XML-compliant 
format.
Open-source, freely available solution for representing 
knowledge and associated uncertainty in a principled 
manner.
Reasoner under development 
at University of Brasilia
• Alpha version released 

March, 2008 on 
SourceForge

PR-OWL:
PR-OWL

A Language for Expressing 
Probabilistic Ontologies

PR-OWL classes

(Costa, 2005)
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Case Study: 
Bombing in Lahore
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Background

Roles:
• IA1& IA2 – Intelligence 

Analysts #1&2
• AD – Known Arms Dealer in 

Isamabad
• TL1 – TL6 – Tribal Leaders

Background information:
• IA1 maintains social networks of 

persons-of-interest in Pakistan;  
has created a SN around AD

• IA2 has access to all intel reports 
associated with Lahore

• IA2 is currently monitoring a 
conference of six tribal leaders 
(TL1-TL6) which is occurring in 
Lahore

New Roles:
• P – Person arrested in Lahore
• BP – The brother of P
• C – Religious Advisor, Cleric

New Evidence:
• Canine unit detects explosive 

residue on P attempting to 
leave city

• P is declared a Person-Of-
Interest and added to IA1’s SN

• SNA reveals:
– BP is the brother of P
– C is the religious advisor of BP
– C is also the religious advisor 

of AD
• IA1 alerts IA2 of relationship

Information Set #1

UNBBayes-MEBN
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Multi-Entity Bayesian Networks

Synthesis of Bayesian networks and first-order logic
• MEBN is to Bayesian networks as algebra is to arithmetic

MEBN fragments (MFrags) represent probabilistic 
relationships among small set of related uncertain 
hypotheses
Compose into MEBN Theories (MTheories)
• Collection of MFrags that satisfies consistency constraints
• represents probability distribution over model structures of 

associated first-order logic theory

Use situation-specific BN (SSBN) to reason over 
instances

15

Plan Agent and Target MFrag

Social 
Network MFrag

Plan Execution 
MFrag

Forensic 
Report
MFrag

Lahore Incident MFrags I
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SSBN Before Adding Evidence

18

SSBN With Evidence

Probability of attack on conference has 
increased from 0.2% to about 10%
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Information Set #2:

New evidence:
• HUMINT report that TL6 is seen in Karachi 

entering residence of C
– C is religious advisor of AD and brother of arrested 

person P

• IMINT change detection reports missing car from 
site of conference

20 Lahore Incident MFrags II

Agent Location 
MFrag

Location
Report 
MFrag

Meeting
Venue MFrag

Location
Constraint

MFrag
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Augmented SSBN

Probability of attack has increased to 71%
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Comments

This case study illustrates aspects of reasoning that 
are needed to achieve effective multi-INT fusion
Enablers for automated support for this kind of 
reasoning:
• General knowledge of logical constraints on properties of 

and relationships among entities of different types
• General knowledge about likelihoods for properties of and 

relationships among entities of different types
• Computationally efficient reasoner for building SSBN 

from instance-specific reports
Enablers for multi-INT fusion
• Shared vocabularies for interchanging all of the above 

types of information
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In Conclusion…

Uncertainty is ubiquitous in intelligence 
analysis
Effective multi-INT fusion requires 
uncertainty management
Uncertainty management must work smoothly 
with semantic technology
PR-OWL extends OWL ontology language to 
represent probabilistic information
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Thank You!
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